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Abstract
This study examines the links between the North Pacific Gyre Oscillation (NPGO) and the East
Asia (EA) summer precipitation (EASP) at a decadal scale. Maximum covariance analysis
reveals that NPGO is the third mode regulating the decadal variation of EASP. ‘Global
warming’ and Pacific Decadal Oscillation are the first two leading modes. Associated with
NPGO, EASP exhibits a north-to-south ‘+−+’ tripole pattern. The related atmospheric
circulations are also examined. Results demonstrate that the linkage between NPGO and
EA involves two processes, namely, extratropical and tropical processes. In the extratropical
process, NPGO features an eastward propagating Rossby wave over the extratropical regions;
this wave intensifies and displaces the EA jet stream northward. In the tropical process, NPGO
is associated with a meridional circulation over the northeastern Pacific and an anomalous
Walker circulation over the tropical oceans. The anomalous Walker circulation exhibits a
downward branch over the western tropical Pacific and features low-level northerly wind over
EA and western North Pacific region. The two processes strengthen the EA summer monsoon
circulation and enhance the moisture transportation from oceans to northern EA; thus, the
precipitation in the northern EA region increases and the precipitation in the central region
decreases.
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1. Introduction

The variability of precipitation over East Asia is
considerably modulated by the variation of sea surface
temperature (SST). Previous work suggested that El
Niño-Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) are specifically the dominant causal
factors at the interannual scale (Chang et al., 2000;
Wang et al., 2000; Ding and Chan, 2005; Luo et al.,
2015, 2016). For instance, an El Niño-like SST pattern
in June 2015 intensified the western Pacific subtropical
high and shifted it southwestward, thus increasing the
occurrence of heavy precipitation in eastern China
(Wang and Gu, 2016). Besides, the Indian Ocean basin
warming is also an important recognized driver of
the East Asian summer rainfall (Xie et al., 2009). In
addition, the decadal variation of East Asia summer
precipitation (EASP) has been documented in some
studies (Kwon et al., 2007; Ding et al., 2008; Zhou
et al., 2009). Global warming is suggested as a dom-
inant factor that modulates the long-term change in
EASP (Yu et al., 2004; Kimoto, 2005; Li et al., 2010).
Moreover, the Pacific Decadal Oscillation (PDO) is
the first leading mode of sea surface height anomaly

(SSHA) and SST anomaly (SSTA) in the North Pacific;
PDO is another fairly important mode with respect to
East Asian climate systems (Wu and Wang, 2002; Ding
and Chan, 2005; Ding et al., 2008; Pei et al., 2015).

The North Pacific Gyre Oscillation (NPGO) has been
identified as the second pattern of the North Pacific
climate variability (Di Lorenzo et al., 2008). Previous
studies demonstrated that the atmospheric forcing pat-
tern of NPGO is the North Pacific Oscillation (NPO)
(Chhak et al., 2009). NPGO is suggested to be influen-
tial on the East Asian climate on the interannual scale
(Wang et al., 2007, 2011; Choi et al., 2011). Its rela-
tionship with East Asian climate may exhibit decadal
changes (Wang et al., 2007; Zhou and Xia, 2012; Pak
et al., 2014). The North Pacific SSTA footprint of the
NPGO is essentially identical to the Victoria Mode
(Bond et al., 2003), which is the second leading pattern
of variability of North Pacific SSTA. NPGO shows a
more decadal viability than the Victoria Mode does (Yi
et al., 2015). NPGO is closely related to ENSO, specif-
ically the central Pacific El Niño (Di Lorenzo et al.,
2010).

Some studies have shown that NPGO significantly
influences East Asian climate. For example, Zhang
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et al. (2013) found that NPGO is significantly asso-
ciated with the occurrences of tropical cyclones in
East Asia and western North Pacific. The relation-
ship between NPGO and winter precipitation in East
Asia has also been investigated (Zhang et al., 2011; He
and Wang, 2013). Nonetheless, the association between
NPGO and East Asian summer precipitation has yet
to be documented. NPGO may play a pivotal role in
shaping the climate system during global warming (Di
Lorenzo et al., 2008; Lienert and Doblas-Reyes, 2013).
This oscillation is also essential for the global cli-
mate system; hence, the mechanism and the extent to
which NPGO influences East Asian summer precipita-
tion should be elucidated.

The remaining parts of this article are organized
as follows. Section 2 introduces the data and meth-
ods. Section 3 presents the analysis results. Section
4 discusses the interpretation of the results. Section
5 presents conclusion, with a summary and some
remarks.

2. Data and methodology

The precipitation dataset used in this study is obtained
from Global Precipitation Climatology Center (GPCC);
this dataset covers 1901–2008 in the East Asian region
(105∘–145∘E, 20∘–45∘N). The Full Data Product (V6)
of GPCC in 1901–2008 is used, with a spatial resolu-
tion of 1∘ × 1∘ latitude by longitude (Schneider et al.,
2011). SSTA data are derived from the Kaplan SSTA
dataset with a spatial resolution of 5∘ × 5∘ (Kaplan
et al., 1998). The atmospheric reanalysis dataset is
obtained from the National Centers for Environmen-
tal Prediction (NCEP) 20th Century Reanalysis V2
(Compo et al., 2011). SSH data are acquired from Sim-
ple Ocean Data Assimilation reanalysis (Carton and
Giese, 2008), and the NPGO index is defined as the
temporal coefficient of the second Empirical Orthog-
onal Function (EOF) of the detrended SSHA in the
northeast Pacific (NEP) region (179.75∘E–110.25∘W,
24.75∘E–62.25∘N) (Di Lorenzo et al., 2008; Yi et al.,
2015).

Five-year Butterworth low-pass filtering (Butter-
worth, 1930) is applied to extract low-frequency
signals from the time series of climate indices and the
related atmospheric variables. Anomalies are deter-
mined by removing the climatological average from
1951 to 1980. Maximum covariance analysis (MCA)
is conducted to identify the coupling relationship
between filtered GPCC precipitation and Kaplan SST
anomalies (Von Storch, 1999; Von Storch and Zwiers,
2001). Pearson correlation and regression analysis are
employed to derive the association among variables
(Von Storch and Zwiers, 2001).

3. Analysis results

This study initially uses MCA to identify the coupling
relationship between precipitation anomalies in East

Asia and SSTA. Among the four dominant coupling
modes identified by MCA, the first two leading modes
correspond to global warming and PDO, respectively
(Figure S1, Supporting information). The influences
of global warming and PDO on East Asian summer
precipitation have been investigated (Wu and Wang,
2002; Yu et al., 2004; Pei et al., 2015). In our study, the
third mode accounting for 10% of the total variance is
mainly examined.

Figure 1 illustrates the spatial and temporal coef-
ficients of the third coupling MCA mode. The
precipitation in East Asia exhibits a tripole pattern:
positive precipitation anomalies appear in northern
East Asian regions, such as North and Northeast China,
northern Korea Peninsula, and northwestern coastal
regions of Japan, and southern East Asian regions,
such as South China. By contrast, negative precipita-
tion anomalies form in the central East Asian region,
mainly in middle and lower Yangtze River Basin (YRB)
and southeastern coastal region of Japan (Figure 1(b)).
This pattern resembles Figure 1(c) of Zhang (2015)
that shows the differences in precipitation between
2001–2008 and 1990–2000, suggesting that NPGO
may play important role in the decadal changes of the
EA summer precipitation since the 1990s. Meanwhile,
SSTA exhibits a northeast–southwest-oriented tripole
pattern, including a dipole correlation pattern in the
North Pacific poleward of 20∘N and a subtropical pole
of positive correlations located in the central–eastern
North Pacific (Figure 1(c)). This pattern is close to the
SSTA regression pattern associated with the NPGO
index and Victoria Mode (Bond et al., 2003).

The temporal coefficients of precipitation and SSTA
show a strong decadal variation, and the two time-series
phenomena yield a high correlation coefficient of 0.79
(p< 0.001). The correlation coefficients between the
NPGO index and two temporal coefficients of precip-
itation and SSTA are >0.80 (p< 0.001). These results
suggest that this coupling mode is mainly modulated
by NPGO, and NPGO plays an important role in the
decadal variability of summer precipitation in East
Asia. It is noted that employing MCA may imply
symmetry of the anomalies. However, the relationship
between NPGO and EA summer precipitation is sig-
nificant. The mechanisms and atmospheric processes
underlying this relationship are investigated in the fol-
lowing parts.

Figure 2 depicts the atmospheric conditions asso-
ciated with the precipitation pattern by illustrating
the regression charts of the surface air temperature
(T2m), sea level pressure (SLP), 500-mb geopo-
tential height (Z500) and vertical velocity (𝜔500)
on the normalized NPGO index. Cooling anoma-
lies cover the most parts of northern East Asia, and
the maximum anomaly forms in North China at
approximately 110∘E and 45∘N (Figure 2(a)). SLP
exhibits a northern–central–southern tripole pat-
tern (Figure 2(b)), which corresponds to the spatial
pattern of precipitation (Figure 1(b)). This tripole
pattern can also be observed in 𝜔500 (Figure 2(c)). In
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Figure 1. Third mode of MCA on 5-year Butterworth low-pass filtered summer (May–September) precipitation in East Asia
(105∘–145∘E, 20∘–45∘N) and filtered global SST. (a) Temporal coefficients of precipitation (blue) and SSTA (red), and normalized
NPGO index (purple); (b) spatial coefficients of precipitation anomaly; and (c) spatial coefficients of SSTA.

this pattern, descending motions appear in northern
and southern East Asia, whereas ascending motions
form over both the central eastern China and the
northern Korean Peninsula. These ascending motions
are consistent with the low-level convergence along
the Meiyu band (Figure 4(c)), a favorable large-scale
configuration for enhanced precipitation over cen-
tral eastern China (Huang et al., 2012). In contrast,
as shown in Figure 2(d), water vapor anomalies are
divergent (convergent) over the central eastern China
(the northern Korean Peninsula). In this sense, the
reduced (enhanced) precipitation over the central East
China (the northern Korean Peninsula) (Figure 1(b)) is
mainly determined by the convergence of water vapor
(Figure 2(d)). The distribution of water vapor conver-
gence is likely to be related to the anomalous low-level
divergence center over the South China (Figure 4(d)),
which is linked to an anomalous Walker circulation
induced by NPGO.

These findings explain the underlying factors influ-
encing the spatial pattern of precipitation. However, the
physical mechanisms implicated in the linkage between
the East Asian summer precipitation and NPGO should
be investigated. These mechanisms are discussed in the
following section.

4. Possible mechanisms

Foregoing analysis reveals that NPGO is significantly
associated with the decadal variation of the summer
precipitation in East Asia. In this section, geopotential
height, winds, velocity potential, and divergent winds

are evaluated to elucidate the processes underlying the
association. Possible mechanisms include extratropi-
cal and tropical processes via an eastward propagating
wave-train and modification of the Walker circulation,
respectively.

4.1. Extratropical process

Figure 3(a) illustrates the spatial regression of geopo-
tential height at 250-mb level on the normalized NPGO
index. At 250-mb level, the geopotential height exhibits
a dipole pattern in NEP, with a high center appear-
ing in the northern region and a low center in the
southern region. This pattern corresponds to the sec-
ond EOF of SSHA in the NEP (Di Lorenzo et al.,
2008; Yi et al., 2015). This geopotential height pat-
tern also features a zonal wave-train pattern in the
high-latitude region. Figure 3(b) shows the wave activ-
ity flux on the NPGO index at 250-mb level (Plumb,
1985). It is observed that the wave-train corresponds
to the eastward propagating Rossby waves (Shaman
and Tziperman, 2007). This wave-train manifests over
the NEP region, and then passes through North Amer-
ica, Atlantic, and the Eurasian continents and generates
intensified 250-mb geopotential height over the north-
ern East Asia (Figure 3(a)).

This given event is an extratropical process that con-
nects NEP and East Asia mainly via the modifica-
tion of East Asian jet stream (EAJS). Furthermore,
the anomalous 250-mb height is accompanied by a
change in EAJS. As shown in Figure 3(a), anoma-
lous 250-mb westerlies appear in the central and north-
ern side of EAJS; conversely, easterly wind anomalies
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Figure 2. Regression of anomalous (a) near surface temperature (T2m, unit: ∘C), (b) SLP, unit: Pa, (c) 500-mb vertical velocity
(𝜔500, scaled by 103, unit: hPa s−1), and (d) water vapor (unit: g m−2) integrated from the surface to 300-mb on the normalized
NPGO index. Solid (dashed) contour denotes negative (positive) values. Shading denotes significant regression coefficient at the
95% confidence interval.

form on the southern side. These phenomena suggest
that EAJS strengthens and moves northward to some
extent. Consequently, the East Asian summer monsoon
is strengthened, and the corresponding rain belt moves
northward. Hence, the strengthened monsoon circula-
tion transports more moisture to the northern East Asia
(Figure 2(d)) and generates more precipitation over
the region (Figure 1(b)). The integrated water vapor
and precipitation over the central East Asian regions,
such as middle and lower YRB regions, are reduced
(Figure 1(b)). Previous studies also suggested that the
northward displacement of EAJS is associated with the
northward migration of Intertropical Convergence Zone
and East Asian rain belt (Shaman and Tziperman, 2007;
Gao and Yang, 2009; Ding et al., 2015).

It is noteworthy that the extratropical process identi-
fied in this study are similar to the eastward propaga-
tion of so-called Silk-Road wave-train teleconnection
(Ding and Wang, 2005; Hsu and Lin, 2007; Orsolini

et al., 2015). Lu et al. (2002) found that this telecon-
nection pattern exists in July and emerges from North
Africa to East Asia along the westerly jet in the mid-
dle latitudes. Enomoto et al. (2003) also noticed the
propagation of stationary Rossby waves along the Asian
westerly jet in the upper troposphere and named it
the Silk-Road pattern. Hsu and Lin (2007) identified
a similar east–west wavelike pattern that connects the
North Pacific and East Asia via the modification of the
Eurasian jet stream. Orsolini et al. (2015) have inves-
tigated the role of eastward propagating wave trains
across the Eurasian continent on the extreme precipi-
tation events of summer 2010 over North and Northeast
China and found a strong link between the Silk-Road
wave-train along the Asian jet stream and extreme pre-
cipitation events. Besides, they also noticed a polar
wave-train along the sub-polar jet. However, this polar
wave-train is not reflected in NPGO in our study. Pre-
vious studies suggest that the Silk-Road wave-train is

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 17: 531–537 (2016)
on behalf of the Royal Meteorological Society.



The North Pacific Gyre Oscillation and East Asia summer precipitation 535

80°N

60°N

40°N

20°N
0 60°E 120°E 180 120°W 60°W 0

1

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

Wave-activity flux and stream function

80°N

60°N

40°N

20°N
0 60°E 120°E 180 120°W 60°W 0

0.1

–10 –8 –6 –4 –2 0 2 4 6 8 10 12

Wave and geopotential height(a)

(b)

Figure 3. As Figure 2 but for (a) geopotential height (shading,
unit: m) and wind (vector, unit: m s−1), and (b) Plumb wave
activity fluxes (vector, unit: m2 s−2) and stream function (shading,
unit: m2 s−1, scaled by 10−6) at the 250-mb level.

likely to be forced by transient eddies and blockings in
the North Atlantic and European sector (Bothe et al.,
2010; Schubert et al., 2014), and ENSO-related SSTA
(Hsu and Lin, 2007). Our analysis results show that it
may also be reflected in the NEP SSTA, e.g. the NPGO
phenomenon, at a decadal scale.

4.2. Tropical process

Figure 4 depicts the spatial pattern of large-scale
winds, velocity potential, and divergent wind with
respect to NPGO. Anomalous high-level cyclone
appears over the northern part of NEP, and anticy-
clone forms over the southern parts (Figure 4(a)).
Anomalous low-level anticyclone and cyclone generate
over the corresponding areas (Figure 4(c)). These
patterns correspond to the SSTA pattern in NEP
(Figure 1(c)). Low-level wind anomalies associated
with NPGO resemble those associated with the Vic-
toria Mode (Ding et al., 2015). Low-level anticyclone
and cyclone over the NEP induce northeasterly winds
(Figure 4(c)), which induce the convergence center
over the central Pacific (Figure 4(d)). This process
leads to wind–evaporation–SST feedback (Xie and
Philander, 1994), and the thermodynamic coupling
induces positive SSTAs in the tropical central Pacific
(TCP, Figure 1(c)). This coupling is also observed in the
high-level atmosphere (Figure 4(c)), with a divergence
center appearing over TCP.

The low-level northerly and high-level southerly
divergent winds over NEP induce an anomalous
meridional circulation that connects extratropical and
tropical Pacific (Figure 4(b) and (d)). The meridional
circulation induces positive convection over the TCP.
Accordingly, this strengthened convection modifies
the Walker circulation through the release of latent
heat. The change in Walker circulation exhibits a zonal
wave-train pattern and constructs a tropical bridge that

connects NPGO and East Asia. A downward branch
over the tropical western Pacific (e.g. around 150∘E),
an upward branch over the western side of Maritime
region (e.g. around 130∘E), and a downward branch
over Indonesia (e.g. around 90∘E) are observed from
east to west. In particular, the downward branch of
Walker circulation over the tropical western Pacific
respectively induces northerly and southerly divergent
winds at low- and high-level atmospheres over the
subtropical western Pacific. Low-level northerly winds
can strengthen the summer monsoon flow subtropical
western Pacific. The strengthened summer monsoon
circulation can thus transport more than the normal
moisture from the western North Pacific to the northern
East Asia, where positive precipitation anomalies occur
(Figure 1(b)).

5. Summary

NPGO has played a major role in modulating the
SST variability since the early 1990s (Bond et al.,
2003). This oscillation has also been projected to
strengthen because of anthropogenic global warming
(Di Lorenzo et al., 2008). Therefore, the possible influ-
ences of NPGO on East Asian precipitation should
be determined. In this study, MCA is used to iden-
tify the coupling relationship between global SSTA and
East Asian summer precipitation. The results reveal that
NPGO is the third mode modulating the decadal varia-
tion of EASP. ‘Global warming’ and PDO are the first
two leading modes. Under the influence of NPGO, pre-
cipitation exhibits a north-to-south ‘+−+’ tripole pat-
tern in East Asia.

The associated atmospheric circulations are also
examined, and a sketch of the mechanisms is depicted
in Figure 5. NPGO and the East Asian summer
precipitation are linked via two processes, namely,
extratropical and tropical processes. In the extratropi-
cal process, an eastward propagating Rossby wave is
featured by NPGO and passes through North America
and the Eurasian continent, and EAJS strengthens
and moves more northward. In the tropical process,
NPGO is associated with meridional circulation over
the NEP and an anomalous Walker circulation over
the tropical oceans. The latter exhibits a downward
branch over the tropical western Pacific; as a result,
meridional circulation over the subtropical western
Pacific and anomalous low-level northerly wind are
induced. The two processes strengthen the East Asian
summer monsoon circulation and transport more mois-
ture to northern East Asia. Therefore, the precipitation
in northern East Asian regions is greater than normal
levels; by contrast, the precipitation in central regions,
such as middle and lower YRB, is less than normal
levels.
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Supporting information

The following supporting information is available:

Figure S1. The first three leading modes of maximum covari-
ance analysis on 5-year Butterworth low-pass filtered sum-
mer (May–September) precipitation in East Asia (105∘–145∘E,
20∘–45∘N) and filtered global sea surface temperature (SST)
anomalies. (a, d, g): temporal coefficients of precipitation (blue)
and SST anomaly (SSTA) (red); (b, e, h): spatial coefficients of
precipitation anomaly; (c, f, i): spatial coefficients of SSTA.
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